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Explanation of the Cu spin-wave excitation gap in Nd2CuO4
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Abstract. By use of a mean-field approach the spin-wave dispersion of the Cu degrees of freedom in the
undoped high-TC material Nd2CuO4 is investigated. The experimentally observed sharp decrease of the
Cu spin-wave gap with increasing temperature in the range T ∗ < T < TN is explained by a paramagnetic-
like susceptibility of the Nd spins which couple to the Cu subsystem. The degeneracy of the “in-plane”
and “out-of-plane” polarized Cu spin-wave branches is shown to be lifted by the uniaxial anisotropy of the
Cu-Cu nearest-neighbor interaction.

PACS. 74.72.Dn La-based cuprates – 75.30.Cr Saturation moments and magnetic susceptibilities –
75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scalling, etc.)

1 Introduction

Since the discovery of electron superconductivity [1] and
heavy fermion-like behavior [2] in Ce-doped Nd2CuO4, its
magnetic structure and magnetic excitations have been
studied intensively. The magnetic structure of the un-
doped material is formed by Cu2+ spins and Nd3+ pseudo-
spins. The latter are carried by the lowest crystalline elec-
tric field (CEF) doublet of the Nd3+ ions.

The Cu spins order in a noncollinear structure of an-
tiferromagnetically ordered planes at a Néel temperature
TN ≈ 250–280 K [3–7]. Below TN , the Nd spins are also
ordered due to strong interactions between Cu and Nd
spins [8]. Two spin reorientation transitions were observed
at 30 K and 75 K [4,5], where adjacent three-plane units
consisting of a Cu plane and two Nd planes are rotated
relatively to one another. Recently, a model has been pro-
posed which explains this behavior by competition be-
tween different inter-unit interactions [9]. We will use this
model, as well as an alternative model, as a starting point
for our mean-field calculation.

The magnetic excitation spectrum of Nd2CuO4 has
been attributed for low energies to Nd excitations and
for high energies to Cu excitations. Inelastic neutron scat-
tering experiments on polycristalline samples and single
crystals at temperatures between 50 mK and 4 K were
performed at low energies (E < 0.8 meV) [10–14]. The
high energy (E > 2.0 meV) Cu spin-wave excitations
have been studied by neutron scattering in single crys-
tals at temperatures between 3–100 K [15–17]. Two dif-
ferent energy gaps were found and have been attributed
to the “in-plane” (IP) and “out-of-plane” (OP) polarized
Cu magnon branches. The gap energies drop sharply from
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10–15 meV below 5 K to about 2 meV (IP) and 5 meV

(OP) at 90 K, according to an approximate (1/
√
T )-law.

It was suggested that this temperature dependence should
be related to a (1/T )-dependence of the polarization of the
Nd ions in the molecular field generated by the antifer-
romagnetically ordered Cu spins [8,17,18]. A theoretical
description of the spin-wave spectrum of the noncollinear
Cu sublattice had already preceded these experimental re-
sults [19]. This work also adressed the important question
why the Cu system orders in a noncollinear structure be-
low TC .

In this paper, we present a mean-field approach to de-
rive quantitative expressions for the temperature depen-
dence of the Cu spin-wave gaps at intermediate tempera-
tures (T ∗ < T � TN ). The lower temperature T ∗ ≈ 2 K
is of the order of the Nd-Nd exchange coupling, so that
for T > T ∗ the thermal energy exceeds the interaction
between the Nd ions. The temperature T ∗ should not be
mixed up with a Nd ordering temperature, because the
magnetic order of the Nd ions below TN is induced by the
Cu-Nd exchange which acts as a staggered magnetic field
at the Nd sites.

Very recently the magnetic excitations for the coupled
Cu-Nd system were studied in the framework of a spin-
wave theory for both the Cu and Nd spins [9]. There, also
an extension to finite temperatures was sketched which
leads to results equivalent to those derived below. How-
ever, although using the same model as this work, we be-
lieve that our approach is much more transparent and
allows a better interpretation of the anomalous temper-
ature dependence of the Cu spin excitation gaps. As we
concentrate on the Cu spin degrees of freedom, we do not
reproduce the full spectrum of modes given in reference [9].

The paper is organized as follows: in Section 2 the
model will be presented. The dynamical susceptibility of
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the Cu subsystem will be derived in Section 3 and will be
used to calculate the dispersion relations of the Cu spin-
wave modes. In Section 4, the resulting expressions for the
Cu spin-wave gaps will be matched to experimental data
in order to determine the model parameters. We will use
mean-field theory throughout this paper. An alternative
route to determine the Cu spin-wave dispersions would be
based on projection technique [20–22].

2 Model

The low temperature magnetic structure of
Nd2CuO4 [3–8] is shown in Figures 1 and 2. The lo-
calized magnetic moments are supposed to interact via
a Heisenberg exchange mechanism. For a better under-
standing of our subsequent calculations, the model used
in reference [9] shall be presented briefly. Motivated by
the observation that at the spin reorientation transitions
only the relative orientation of adjacent three-plane units
– but not the spin structure within these units – changes,
the Cu-Nd interaction between nearest neighbors has
been assumed to be the dominant interaction between Cu
and Nd ions. The lattice is then decomposed into weakly
interacting three-plane units consisting of a Cu plane
sandwiched between two Nd planes as shown in Figure 1.
We will consider only one of these units and completely
neglect interactions between units. This reduces the
three-dimensional crystal to a two-dimensional (planar)
model system.
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Fig. 1. Part of a three-plane unit comprising a Cu plane (full
circles) and the adjacent Nd planes (open circles). Low tem-
perature magnetic moments are indicated by arrows. The ex-
change parameters are marked by double lines connecting the
corresponding lattice sites. The nearest-neighbor Cu-Nd inter-
action Kxy is of pseudodipolar type.

The interaction Hamiltonian

Hint = HCu−Cu +HNd−Nd +HCu−Nd (1)

is composed of three parts describing interactions between
different species of ions. Both HCu−Cu and HNd−Nd have
been used before to describe the respective isolated Cu
and Nd spin systems in three dimensions [5,13,14,16,19].
However, for the investigation of the Cu spin-wave gaps

it turns out to be necessary to treat the full Hamiltonian
including the Cu-Nd interaction. The crystalline electric
field Hamiltonian HCEF for the Nd ions will not be ex-
plicitly included. It is assumed that all Nd ions are in the
CEF groundstate because the next higher CEF doublet
has an energy of 15.9 meV [23] and may be neglected for
temperatures T < 100 K.

Denoting the Cu spins by Si and the Nd pseudospins
by F±,i, the Hamiltonian for the planar model is given by

HCu−Cu = −J
∑
〈ij〉

(
Si · Sj − εS

z
i S

z
j

)
, (2)

HNd−Nd = −
∑
i

F−,i · I1 · F+,i

−
∑
〈ij〉

∑
α

Fα,i · I3 · Fα,j

−
∑
〈〈ij〉〉

∑
α

Fα,i · I4 · Fα,j , (3)

HCu−Nd = Kxy

∑
[ij]

∑
α

(
Sxi F

y
α,j + SyiF

x
α,j

)
ϕij . (4)

Here the first lower index α = +(−) on the Nd spins
indicates spins lying on the upper (lower) Nd plane of the
three-plane unit (cf. Fig. 1). The indices i or j denote
the xy coordinates within the planes. The notations 〈ij〉
and 〈〈ij〉〉 in equations (2, 3) refer to pairs of in-plane
nearest and next-nearest neighbors respectively, while [ij]
in equation (4) refers to nearest-neighbor pairs on different
planes. The orientation of the lattice has been chosen in
a way that in the groundstate the Cu spins point in the
±y direction and the Nd spins in the ±x direction.

As an isotropic interaction between nearest neighbors
on adjacent planes would vanish on the average due to the
antiferromagnetic geometry of the groundstate (Fig. 2),
the Cu-Nd interaction is assumed to be of pseudodipolar
type [9]. The phase factor ϕij = eiQ·RieiQ·Rα,j in equa-
tion (4) incorporates the directional dependence of this
coupling. Here, Q = (π, π) is the antiferromagnetic wave
vector and Ri, Rα,j denote lattice vectors.

The antiferromagnetic nearest-neighbor Cu-Cu coup-
ling J < 0 has been found to be the dominant spin–
spin interaction in Nd2CuO4 [5,24]. It is well known
for the lamellar cuprates that this interaction is axially
anisotropic as expressed by the dimensionless anisotropy
parameter ε > 0 [5,16]. The anisotropy of the Cu-Cu ex-
change is the reason for the different gap energies of IP
and OP polarized Cu spin waves. A next-nearest-neighbor
interaction between Cu spins is presumably weaker than
J and has not been included.

The Nd-Nd exchange tensors Iν (ν = 1–4) [13,14] are

diagonal with Iν
xx = Iν

yy = I⊥ν < 0, Iν
zz = I

‖
ν < 0. Note

that an additional nearest-neighbor exchange I2 between

Nd spins of adjacent planes belonging to different three-
plane units will not be considered. Such an interaction
would vanish within the mean-field approach used below.
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The groundstate of the planar model is twofold degen-
erate, because the energy does not change if all spins are
rotated by 180◦. An additional twofold degeneracy arises
from the fact that there are two types of three-plane units
with Cu spins pointing in y direction or x direction.

Note that the part of the Hamiltonian acting on the
Cu spins is not rotationally invariant due to the angular
dependence of Kxy and the small anisotropy parameter ε.
The effect of nonzero Kxy and ε on the isotropic system is
to select the classical zero temperature groundstate shown
in Figure 1 from among similar states with all spins ro-
tated around a common axis. A finite ε > 0 makes states
with Cu spins pointing in the z direction energetically
less favorable than states with Cu spins pointing perpen-
dicular to the z direction, while Kxy > 0 stabilizes the
noncollinear arrangement of Cu and Nd spins in adjacent
planes.
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Fig. 2. Tetragonal unit cell of Nd2CuO4 with noncollinear
sublattices A (left) and B (right) pulled apart. Labels on the
right of the B-cell indicate vertical plane numbering. The coup-
ling J∗ on the left denotes an effective interaction between Cu
z axis neighbors.

Alternatively, the lattice may be decomposed into the
two noncollinear sublattices A and B (Fig. 2), in each
of which the Cu and Nd ions are located on sites of a
simple tetragonal lattice. Sublattice B is generated from
sublattice A by translation by (a/2, a/2, c/2) plus a 90◦-
rotation around the z axis. Any spin located on sublattice
A is in a symmetrical position with respect to the antifer-
romagnetically ordered spins on sublattice B. Therefore,
if only isotropic exchange is considered the interaction
between both sublattices vanishes on the average, which
motivates the decomposition of the lattice into the ap-
proximately noninteracting sublattices. The isotropic an-
tiferromagnetic Cu-Nd exchange J ′ < 0 between nearest

neighbors along the z axis is then assumed to be the dom-
inant Cu-Nd interaction. In order to explain the parallel
orientation of the Cu spins along the z axis, an effective
ferromagnetic Cu-Cu interplane interaction J∗ > 0 has to
be included. Note that this interaction has to be stronger
than the competing effective Cu-Cu interaction mediated
by J ′ and I1 which itself would lead to an antiparallel
orientation of Cu spins along the z axis. It is further nec-
essary to break the tetragonal symmetry of the Hamil-
tonian by enhancing the y (x) component of the Cu-Nd
interactions within sublattice A (B), so that instead of
equation (4) the interactions

HCu−Nd
A = −J ′

∑
n

∑
i

[
Sn,i ·

(
Fn−,i + Fn+,i

)
+ε′Syn,i

(
F yn−,i + F yn+,i

)]
, (5)

HCu−Nd
B = −J ′

∑
n

∑
i

[
Sn,i ·

(
Fn−,i + Fn+,i

)
+ε′Sxn,i

(
F xn−,i + F xn+,i

)]
(6)

are used, where the indices n, n+, and n− denote a Cu
plane and the two adjacent Nd-planes, all on the same
sublattice. The small anisotropy parameter ε′ > 0 favors
states with spins in sublattice A (B) pointing in the y (x)
direction and therefore stabilizes the noncollinear mag-
netic structure. An anisotropy of this kind has not been
proposed so far. However, the parameter ε′ enters the re-
sulting Cu spin-wave dispersions only in the combination
J ′(1 + ε′).

The AB-sublattice model in fact retains three-dimen-
sionality, but as the Cu-Cu interaction J∗ along the z axis
is much smaller than J , there is virtually no dispersion of
the Cu spin waves in z direction. The groundstate of the
AB-sublattice model is also fourfold degenerate, because
all spins may be flipped by 180◦ independently on each of
the two sublattices without change of energy. As the inter-
action between the noncollinear sublattices A and B has
been neglected, the AB-sublattice model explains neither
the noncollinear structure nor the spin reorientation tran-
sitions. However, the planar model and the AB-sublattice
model lead to equivalent Cu spin-wave gaps, while the re-
sults for the Nd spin-wave modes depend crucially on the
model used [9,25].

3 Dynamical copper spin susceptibility

In the following, we want to evaluate the Cu-Cu spin sus-
ceptibility within a mean-field treatment by using the mo-
del (2–4). We start from the Fourier-transformed interac-
tion Hamiltonian

HCu−Cu = −J
∑
q

γ3(q)
(
Sq · S−q − εS

z
qS

z
−q

)
, (7)
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HNd−Nd = −
∑
q

F+,q · I1 · F−,−q

−
∑
q

∑
α

γ3(q) Fα,q · I3 ·Fα,−q

−
∑
q

∑
α

γ4(q) Fα,q · I4 ·Fα,−q , (8)

HCu−Nd = Kxy

∑
q

∑
α

γpd(q)Sq · F̃α,q , (9)

where functions γ3(q) = 2
(

cos(qx) + cos(qy)
)
, γ4(q) =

4 cos(qx) cos(qy) and γpd(q) = 4 sin(qx/2) sin(qy/2) have
been introduced. Note that the angular dependence of the
pseudodipolar interaction leads to sine functions in γpd,
where cosines would be expected for an isotropic interac-
tion. The vector F̃α,q =

(
F yα,q, F

x
α,q, 0

)
in equation (9)

is formed by interchanging the x and y component of the
Nd spin Fα,q and setting the z component to zero.

In addition, a weak time- and space-dependent exter-
nal magnetic field Heiωt is coupled to the Cu spins by

HZ(t) = gµB
∑
q

Sq ·H−q cos(ωt) , (10)

so that the Hamiltonian now reads

H(t) = Hint +HZ(t) . (11)

The dynamical properties of the Cu excitations will be
derived from the equation of motion

d

dt

〈
Sq′(t)

〉
= −

i

~

〈
[Sq′(t), H(t)]−

〉
, (12)

where the brackets
〈
. . .
〉

denote dynamical expectation

values. By use of the Hamiltonian (11), we obtain the ex-
pression

d

dt

〈
Sq′

〉
= gµB

∑
q

Hq(t)×
〈
Sq′−q

〉
−2J

∑
q

γ3(q)
(〈

Sq × Sq′−q

〉
− ε
〈
Szq ẑ× Sq′−q

〉)
+Kxy

∑
q

∑
α

γpd(q)
〈
F̃α,q × Sq′−q

〉
.

(13)

Next, the spin operators are decomposed into their static
expectation values leading to molecular fields and into
smaller fluctuation parts

Sq = 〈Sq〉0 + δSq , (14)

Fα,q = 〈Fα,q〉0 + δFα,q . (15)

Subsequently, all fluctuation terms of quadratic order will
be neglected, for example〈

Sq × Sq′−q

〉
≈
〈
Sq

〉
0
×
〈
δSq′−q

〉
+
〈
δSq

〉
×
〈
Sq′−q

〉
0

+
〈
Sq

〉
0
×
〈
Sq′−q

〉
0
. (16)

At temperatures T � TN , due to the antiferromagnetic
order of the Cu spins all static expectation values 〈Sq〉0
vanish except those with wave vector Q = (π, π). Further-
more, the Cu spins are assumed to be oriented parallel to
the y direction, so that 〈SQ〉0 will be replaced by SQ ŷ,
where ŷ is a unit vector and SQ represents the staggered
moment per Cu site. Consequently, all terms of quadratic
order in the static Cu spin expectation values vanish due
to the vector products (cf. Eq. (16)). The equation of mo-
tion then reduces to

d

dt

〈
δSq′

〉
= SQ ŷ×

[
− gµB Hq′−Q(t)

+2J
(
γ3(q′ −Q)− γ3(Q)

) 〈
δSq′−Q

〉
−2εJγ3(q′ −Q)

〈
δSzq′−Q

〉
ẑ

−Kxy

∑
α

γpd(q
′ −Q)

(〈
F̃α,q′−Q

〉
0

+
〈
δF̃α,q′−Q

〉) ]
+Kxy

∑
q

∑
α

γpd(q)
〈
F̃α,q

〉
0
×
〈
δSq′−q

〉
.

(17)

As the external magnetic field Hq was assumed to be

weak, the fluctuation part of
〈
Sq′−q

〉
has been omitted

in the Zeeman term.
In order to eliminate the remaining Nd spin oper-

ators, linear response theory will be used. In an adi-
abatic approximation the dynamical expectation values〈
δF̃α,q′−Q

〉
in equation (17) can be neglected. This is

reasonable because we are only interested in Cu spin wave
excitations which have much higher energies than the Nd
spin waves. Therefore, the time-dependent contributions〈
δF̃α,q′−Q

〉
are negligibly small. Furthermore, the Nd ex-

pectation values are independent of the position of the Nd
spin above or below the Cu plane, so that the sums over
α = +,− result in a factor of 2. The static expectation

value
〈
F̃q′−Q

〉
0

will be evaluated within a mean-field ap-

proach. The Nd subsystem is subject to a molecular field
hCu(q) generated by the Cu moments. Up to first order
in the Cu-Nd exchange the static response of the Nd mo-
ments is given by〈

Fq

〉
0

= χNd

0
(q) · hCu(q) . (18)

Here χNd

0
(q) is the static susceptibility matrix of the pure

Nd system whereas hCu(q) acts as a staggered field in x
direction

hCu(q) = hxCu(Q) δqQ x̂ , (19)

hxCu(Q) = −4Kxy

〈
SyQ

〉
0

= −4KxySQ . (20)

At temperatures T > T ∗ where T ∗ is a temperature of
the order of the Nd-Nd interactions, the Nd susceptibil-
ity has a paramagnetic-like shape. One finds that χNd

0
(q)

is diagonal with χxxNd

0
(q) = χyy Nd

0
(q) = χ⊥ Nd

0 (q) and
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χzz Nd

0
(q) = χ

‖ Nd
0 (q), where for η =⊥, ‖

χη Nd
0 (q) =(
kBT

F 2
−
(
Iη1 + 2Iη3 γ3(q) + 2Iη4 γ4(q)

))−1

. (21)

Here F = 1/2 denotes the pseudospin of the lowest
Nd CEF doublet. In evaluating the q-dependent part of
equation (21), the parameter values Iν (ν = 1–4) given

by Henggeler et al. [13,14] for the exchange interactions of
the Nd pseudospins will be used. Equation (18) is used to

eliminate
〈
F̃q′−q

〉
0

=
〈
F xq′−q

〉
0
ŷ from equation (17), so

that

d

dt

〈
δSq

〉
= SQ ŷ ×

[
− gµBHq−Q(t)

+ J̃(q−Q)
〈
δSq−Q

〉
− 2εJγ3(q−Q)

〈
δSzq−Q

〉
ẑ

]
,

(22)

where

J̃(q) = 2J
(
γ3(q)− γ3(Q)

)
− 8K2

xyγpd(Q)χ⊥ Nd
0 (Q) .

(23)

As is obvious from equation (22), fluctuations of the lon-
gitudinal component Syq vanish. The fluctuations of the x
component constitute the IP polarized spin-wave modes,
those of the z component the OP modes. Equation (22)
forms two sets of coupled linear differential equations for
the two sets of variables{〈

δSxq

〉
,
〈
δSzq−Q

〉}
,
{〈
δSzq

〉
,
〈
δSxq−Q

〉}
. (24)

From these sets one can obtain the dynamical susceptibil-
ity χCu(q, ω), e.g., for the first set in (24)

〈
δSxq

〉
〈
δSzq−Q

〉
 =

gµBRe

{
χCu(q, ω) ·

(
Hx

qe
iωt

Hz
q−Qe

iωt

)}
, (25)

where

χCu(q, ω) =
SQ

ω2(q)− ω2

×

((
J̃(q−Q)− 2εJγ3(q−Q)

)
SQ −iω

iω J̃(q)SQ

)
. (26)

The dispersion relation ω(q) for the Cu spin-wave excita-
tions is found from the poles of the susceptibility

ω2
IP (q) =

(
J̃(q−Q)− 2εJγ3(q−Q)

)
J̃(q)S2

Q . (27)

The second set of variables in (24) yields

ω2
OP (q) =

(
J̃(q) − 2εJγ3(q)

)
J̃(q−Q)S2

Q , (28)

which is different from equation (27) due to the appear-
ance of the anisotropy ε. By reference to the equation of
motion (22) the corresponding eigenmodes have been iden-
tified as IP and OP polarized excitations, respectively. The
derivation of the excitation energies (27, 28) is also possi-
ble within the framework of projection formalism [20–22].

The dispersions are plotted in Figure 3, where the
parameter values given in Section 4 have been used. In
the Γ -M direction our results are in qualitative agree-
ment with those of reference [19], except that we find
a gap at the Γ -point. The mode energies decrease
significantly with increasing temperature. The energy dif-
ference ∆ω(q) = ωOP (q) − ωIP (q) of the two polariza-
tion branches is most pronounced at the antiferromag-
netic Bragg point XC = (π, π) and at the center point
Γ = (0, 0), as is shown in Figure 4. At the pointM = (π, 0)
the two Cu spin-wave modes are degenerate.

Note that an analogous calculation can also be per-
formed in the three-dimensional AB-sublattice model by
use of the Cu-Nd interactions (5, 6). In this case, the Cu
exchange field (Eq. (20)) has to be replaced by

hyCu(Q) = J ′(1 + ε′)SQ (29)

for the A sublattice and an equivalent expression for the B
sublattice. This leads to an overall replacement of 16K2

xy

by J
′2(1 + ε′)2 without further change of the structure of

the equations. Therefore, with respect to the Cu excita-
tions, the planar model and the AB-sublattice model are
equivalent.

4 Discussion

The excitation gaps ∆IP and ∆OP are obtained by eval-
uating equations (27, 28) at q = Q

∆2
IP = −32K2

xyχ
⊥ Nd
0 (Q)

(
J̃(0)− 8εJ

)
S2

Q , (30)

∆2
OP = ∆2

IP +∆2 , (31)

where

∆2 = 8εJ
(
J̃(0) + J̃(Q)

)
S2

Q . (32)

The empirical relation ∆2
OP = ∆2

IP + ∆2 proposed by
Ivanov et al. [17] in discussing their experimental data is
reproduced within our approach.

In evaluating the excitation energies, the temperature
dependence of the staggered moment per Cu site

SQ = 0.606

(
1−

T

TN

)β
S (33)

has been used [5–7,9,26,27]. S = 1/2 denotes the Cu spin.
The exponent β = 0.3 has been determined for Nd2CuO4

[28], with other lamellar cuprates showing a similar tem-
perature dependence. Under comparatively weak Cu-Nd
coupling (Kxy �|J |) and weak external field the Cu sub-
system is treated as a two-dimensional Heisenberg antifer-
romagnet [29,30], for which quantum fluctuations reduce
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The interaction parameters are those presented in Section 4. Note that the energy difference between IP and OP polarized
excitations is much smaller than the energy scale of this plot.
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Fig. 4. Energy difference ∆ω(q) = ωOP (q)− ωIP (q) between Cu spin-wave modes in the tetragonal ΓMXC plane at temper-
atures T = 0, 100 K. All parameters are those used in Figure 3. Note the difference in scale as compared to Figure 3.

the staggered moment at T = 0 by a factor ∼ 0.606 com-
pared to the two-dimensional Ising antiferromagnet. It has
to be stressed that due to the occurence of SQ in equa-
tion (32) the quantity ∆ is not temperature-independent
as the earlier notation (∆OP (T →∞), cf. Ref. [17]) might
suggest, but rather vanishes for T → TN .

Below TN the IP excitation shows a finite gap which
vanishes if the anisotropic Cu-Nd interaction Kxy is swit-

ched off. In that case, zero-energy Goldstone modes occur
to restore the tetragonal symmetry of the Hamiltonian
which is broken by the magnetic structure of the ground-
state. On the contrary, for ε 6= 0 the OP gap remains finite
even if Kxy = 0. This is due to the fact that an OP po-
larized excitation cannot restore tetragonal symmetry. In
the limit ε = Kxy = 0, where the Hamiltonian coupling to
the Cu spins has full rotational symmetry, there are also
OP polarized Goldstone modes and both gaps vanish.
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To obtain quantitative results we used the interaction
parameters of references [13,14,24]

J = −108± 6 meV,

I⊥1 = −0.43± 0.03 meV,

I⊥3 = −0.07± 0.01 meV,

I⊥4 = −0.04± 0.01 meV.

This leaves the parameters Kxy and ε to be determined.
From a fit to the gap data we obtain

Kxy = 0.18± 0.02 meV, (34)

ε = 2.0± 0.2× 10−4 . (35)

The magnitude of the anisotropy ε is in excellent agree-
ment with literature values [5]. The synopsis of experi-
mental data and our theoretical description is given in
Figure 5. The sharp decrease of ∆IP and ∆OP with T is
due to the strong temperature dependence of the para-
magnetic susceptibility χ⊥ Nd

0 (q) which is of Curie-Weiss
type (cf. Eq. (21)) for the pure Nd subsystem, i.e. without
coupling to the Cu spins.
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Fig. 5. Temperature dependence of energy gaps for “in-
plane” (IP) and “out-of-plane” (OP) polarized Cu spin waves.
Circles: experimental data from Ivanov et al. [17]; lines: mod-
eled temperature dependence with parameters given in the
text.

A description of Cu and Nd spin waves in Nd2CuO4

has already been performed by Sachidanandam et al. [9].
Contrary to our approach, they used spin-wave theory to
obtain the Cu excitation energies at T = 0 and then gener-
alized the dispersions to finite temperatures. Though their
results are equivalent to ours, we believe that our approach
is more transparent as it concentrates on the explanation
of the temperature dependence of the Cu spin-wave gaps
and the underlying physical ideas. Furthermore, we have
shown that the resulting Cu spin-wave gaps are indepen-
dent of the model used (three-plane unit or AB-sublattice
model), as is checked most conveniently by projection for-
malism.

5 Conclusions

We have investigated the static and dynamical properties
of the undoped high-TC material Nd2CuO4 in the tem-
perature range T ∗ < T � TN focusing on the high-energy
Cu spin-wave excitations. In order to explain the observed
temperature dependence of the Cu spin-wave gaps, we
combined the interaction Hamiltonians of the isolated Cu
and Nd subsystems with a third Hamiltonian describ-
ing anisotropic nearest-neighbor Cu-Nd exchange. We re-
stricted our calculations to a single three-plane unit con-
sisting of a Cu plane sandwiched between two Nd planes.
Interactions between different three-plane units were com-
pletely neglected in this two-dimensional model. A three-
dimensional model which decouples the two noncollinear
sublattices of Nd2CuO4 was found to give equivalent re-
sults.

In the considered temperature range the static sus-
ceptibility χNd

0
of the pure Nd subsystem without any

coupling to the Cu spins shows a Curie-Weiss temperature
dependence. Due to nonvanishing Cu-Nd exchange coup-
ling, the molecular field of the antiferromagnetically or-
dered Cu spins induces a temperature-dependent ordered
moment on the Nd sites which in turn acts back on the
Cu spins and thus causes the dramatic increase of the
Cu spin-wave gap below 30 K. The IP and OP polarized
modes are nondegenerate due to a uniaxial anisotropy ε
of the nearest-neighbor Cu-Cu exchange interaction.

The authors wish to thank A. Metz, M. Loewenhaupt, P. Thal-
meier, N.M. Pyka and V. Zevin for stimulating discussions and
important suggestions. This work was performed within the
SFB 463 “Seltenerd-Übergangsmetallverbindungen” at the TU
Dresden.
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